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Ich ziele darauf ab, die philosophische Kontroverse zwischen logischen Symboli-
zisten und dynamischen Konnektionisten in der Kognitionswissenschaft zu behe-
ben. Als einer der prominenten Philosophen des Dynamizismus vertritt Timothy 
van Gelder die Ansicht, dass der grundsätzliche Unterschied zwischen symboli-
schen Systemen und dynamischen Systemen explizit gemacht werden kann, in-
dem man deren komputationelle Mächtigkeiten (oder äquivalent Leistungsfähig-
keiten) kontrastiert. Ich argumentiere – entgegen van Gelders Ansicht – dafür, dass 
es keinen Unterschied in principio gibt zwischen den beiden Arten von Systemen 
hinsichtlich deren komputationellen Mächtigkeiten. In der Argumentation rekur-
riere ich auf Hannes Leitgebs Sequenz von Repräsentationstheoremen, die eine 
profunde Äquivalenz zwischen nicht-monotonen Logiken und dynamischen neuro- 
nalen Netzen beweist.

Logical Sym bolicism vs. Dynamicist 
Connectionism: Is there a Dif fer

ence in Computational Power?

Mario Günther

I aim to resolve the philosophical controversy between logical symbolicism and 
dynamicist connectionism in cognitive science. A prominent philosopher, Timo-
thy van Gelder, holds the view that the fundamental difference between symbolic 
systems and dynamical systems can be rendered explicit by looking at their com-
putational powers. We argue – against van Gelder’s view – for the claim that there 
is no difference in principle between the two types of systems concerning their re-
presentational and computational powers. In the argumentation we invoke Hannes 
Leitgeb’s sequence of representation theorems that shows a profound equivalence 
between non-monotonic logics and dynamicist neural networks.

I Van Gelder’s Claims

Apparently there is a philosophical cleavage in cognitive science. Some 
philosophers and/or cognitive scientists adhere to symbolicism, some 

adhere to connectionism. There have been fierce debates about the ‘true 
nature’ of cognition. We aim towards a resolution of this debate. The paper 
is supposed to be a first step. Philosopher Timothy van Gelder adds fuel 
to the fire concerning this ongoing debate. He holds both that only dyna-
micism can model cognition appropriately, and that dynamicism, while 
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compatible with connectionism, is not compatible with symbolicism. In 
the debate he defends his dynamical hypothesis as a substantive alterna-
tive to what he calls the ‘computational’ hypothesis; we will call it symbolic 
hypothesis for the sake of clarity (dynamical systems can also execute 
computations). Defending the dynamical hypothesis against the symbolic 
hypothesis means for van Gelder at first that there is a fundamental oppo-
sition between the two:

Dynamical Hypothesis (DH): Cognitive agents instantiate dyna-
mical systems.

Symbolic Hypothesis (SH): Cognitive agents instantiate digital 
computers.

Of course, human beings are dynamical systems, and not digital com-
puters.1 However, van Gelder’s claim is stronger: human cognition is best 
described by dynamical systems, and the description models exactly the 
same as the actual cognitive process.2 Digital computers in van Gelder’s 
sense are systems which operate by manipulating symbolic representa-
tions. He demands that this manipulation of representations exhibits a 
systematic interpretation such that the system’s operations ‘make sense’. 
This demand, however, is qualified by noting that “an interpretation in the 
current sense may not be enough to guarantee that the system has ‘mean
ing’ in some stronger sense, (and hence, perhaps, ‘mind’)”.3

On the one hand van Gelder cites Newell and Simon’s physical symbol 
system hypothesis (PSSH) as a famous presentation of the SH; on the other 

1   Already one of the fathers of symbolicism, Alan M. Turing, was aware of that 
“[e]verything really moves continuously. But there are many kinds of machine 
which can profitably be thought of as being discrete state machines. For instance 
in considering the switches for a lighting system it is a convenient fiction that each 
switch must be definitely on or definitely off. There must be intermediate posi-
tions, but for most purposes we can forget about them.” Turing (1959): 439. The 
question is whether we can describe human cognition as one of Turing’s discrete 
state machines.
2   In this paper, we do not consider the claim of a 1:1 mapping or ‘identity instan-
tiation’ between reality and model (or description), but it seems metaphysically 
biased and concerning the complexity of human cognition (or the brain) to some 
extent odd. Abstractions are, after all, important in science, especially when the 
investigated entity is in reality very complex. For a survey about this issue see van 
Leeuwen (2005): 299-301.
3   Van Gelder (1998): 620, footnote 9.
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hand he claims that connectionism can model cognition as the behaviour 
of dynamical systems. Moreover, he states that “one class of dynamical 
systems, recurrent neural networks [...] are more powerful – can com pute 
a wider class of functions – than Turing Machines.19 ”4 He adds in his foot-
note 19 that “dynamical systems can have ‘superTuring’ capacities”.5

We see that van Gelder tries to strengthen the dynamicist perspective 
on cognition against the symbolicist paradigm. To this end he proposes 
the DH as working hypothesis for cognitive scientists that, according to 
him, competes with and is fundamentally opposed to the symbolicist para-
digm. In order to defend his hypothesis he roughly argues – based on his 
assumptions (i)-(v) – as follows:

(i) There is a fundamental difference between symbolic systems 
and dynamical systems.

(ii) If there is a fundamental difference between symbolic 
systems and dynamical systems, then there is a fundamental 
difference concerning their computational and representational 
powers.

(iii) If symbolic and dynamical systems differ concerning the 
computational and representational powers, then dynamical 
systems have a greater computational power than symbolic sys-
tems.

(iv) If dynamical systems have a greater computational power 
than symbolic systems, then symbolic systems are not sufficient 
to describe dynamical systems.

(v) The (human) brain instantiates a dynamical system that de-
scribes (human) cognition.

Therefore, (vi) symbolic systems are not sufficient to describe 
or model (human) cognition, whereas dynamical systems are 
sufficient.

4   Van Gelder (1998): 632.
5   Van Gelder (1998): 632, footnote 19.



Mario Günther

Incipiens – Zeitschrift für Erstpublikationen aus der Philosophie und ihrer Geschichte

8

And so, (vii) dynamical systems are the appropriate tool to mo-
del human cognition, and thus cognitive scientists should prefer 
as working hypothesis the DH over the SH.

The plan is to investigate whether the mentioned claims (i), (ii), (iii), 
and (iv) are true, and thus the conclusion (vi) holds. In section II, we outline 
the symbolicist perspective van Gelder criticises. The picture of symboli-
cism he suggests by citing the PSSH is too strong. For an adequate view we 
replace the PSSH presented by van Gelder as central tenet of symbolicism 
by the psychological version of the Church-Turing thesis. In section III, we 
consider the claim that human beings can compute more (functions) than 
digital computers, which is incompatible with the Church-Turing thesis. 
However, it turns out that although theoretically possible, super-Turing 
machines are not physically plausible. We argue for the physical implau-
sibility of super-Turing neural networks with which van Gelder underpins 
claim (iii).

In section IV, we introduce the idea behind the connectionist perspec-
tive on cognition, the neuron hypothesis and a dynamical alternative with 
respect to the alleged difference between symbolicism and connectionism. 
We end the section with the remark that logic can help to bridge the gap 
not only between algorithmic and implementation levels, but also to find 
structural similarities across different instantiations of cognition.

In section V, we present one result of such a logical search for simi-
larities, namely McCulloch and Pitts representation theorem between a 
particular logical theory and a class of neural networks satisfying partic-
ular constraints. Their result raises the question whether there is some 
difference in principle between a symbolicist and connectionist analysis 
of cognition. In section VI, we address the controversy between symboli-
cists and connectionists about mental representations, in particular with 
respect to the ‘symbolicsubsymbolic’ distinction, in order to refine the 
question from the previous section. In section VII, we argue via represen-
tation theorems given by Hannes Leitgeb against van Gelder’s claims (ii) 
and (iii). The representation theorems for non-monotonic logics in neural 
networks suggest that there is no substantive difference in the computa-
tional power of symbolic systems and that of dynamical neural networks.
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II The Symbolicist Perspective

As an opponent of the SH, van Gelder contests the claim that cognitive 
agents are (in some sense equivalent to) digital computers. In this sec-
tion we outline the symbolicist perspective on cognition, which van Gelder 
characterises as the ‘computationalist’ perspective and inappropriate. We 
start with the Church-Turing thesis. The following serves to clarify what he 
means with ‘digital computers’, why the PSSH is a version of the SH, and 
why Turing machines play an important role in the symbolicist ap proach 
to cognition. Moreover, we try to draw a line between the necessary 
commitments of all members of the symbolicist approach and stronger 
commitments shared only by a few.

Human beings are physically realised cognizers. As such they are con-
fronted with cognitive tasks or problems. One goal of Cognitive Science 
is to describe the cognitive processes involved in problem solving. The 
working hypothesis most cognitive scientists share – be they symbolicists, 
connectionists, or dynamicists – is that cognition can be considered as 
information processing, and thus as computation.

The symbolicist approach treats cognition as information processing 
in a symbolic system. This perspective claims that intelligent behaviour as 
we observe it in human beings can be seen as analogous to digital com-
puters. But what does ‘computation’ mean here? This question leads us to 
the core of the symbolicist approach, a sophisticated conjecture of Church 
and Turing:

Church-Turing Thesis (CTT): All computation, in the intuitive 
sense of a mechanical procedure for solving problems, is for-
mally equivalent to computation by a Turing machine.

Almost all philosophers and cognitive scientists share the view that 
the (universal) Turing machine can be seen as the theoretical concept 
of computation. Van Gelder understands the SH in the following sense: 
cognitive agents instantiate realised Turing machines. The CTT cannot 
be formally proved. However, all attempts so far to explicate the intui-
tive notion of computability have turned out to define exactly the same 
class of problems. For instance, definitions via abstract machines (random 
access machines, cellular automata, genetic algorithms), formal systems 
(Church’s l-calculus, Post’s rewriting systems), and particular classes of 
function (recursive functions) are all formally equivalent to the definition 
of Turing machine computability. These results provide support for the 
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Church-Turing thesis that all computation is equivalent to Turing com-
putation.6

If we accept the Church-Turing thesis and we accept that the human 
mind cognises (i.e. executes computations), then we should also accept 
the psychological counterpart of the CTT:

Psychological Version of the CTT: The human mind can only 
solve problems that are computable by a Turing machine.

Newell and Simon went one step further when they formulated their 
conjecture:

Physical Symbol System Hypothesis (PSSH): “A physical sym-
bol system has the necessary and sufficient means for general 
intelligent action.”7

Presupposing that the human mind acts intelligently, the PSSH implies 
that the human mind is a symbolic system in some sense (for example a 
Turing machine) realised in the brain (similar to the implementation of a 
Turing machine in the physical appearance of digital computers). More-
over, the PSSH even implies that physical symbolic systems, i.e. realised 
machines, can be intelligent cognitive agents (similar to human beings).

One needs not necessarily embrace the PSSH in order to adhere to 
the symbolicist approach. In contrast, one needs to agree on the psycho-
logical version of the CTT, which states – in other words – that cognitive 
tasks can be described by computable functions (which express a ‘Turing 
table’, i.e. the programme or algorithm governing a Turing machine). In 
this form the PSSH implies the psychological version of the CTT, since the 
PSSH states that the intelligent performance while solving a cognitive task 
can be described by symbol manipulation, and functions fall within the 
domain of symbol manipulation. The converse implication does obviously 
not hold, and the psychological version of the CTT does not say anything 
about implementation issues.

When van Gelder cites the PSSH in order to characterise the symboli-
cist approach, he takes one of the strongest claims ever raised by classical 
computationalists. As mentioned before, the adoption of the PSSH is not 
necessary in order to call oneself a symbolicist. It is necessary though 
to hold that – from an abstract perspective – a cognitive task can be de-
scribed by an information-processing task:

6   Cf. Cooper (2003).
7   Newell/Simon (1976): 116.
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Given some input (e.g. a visual stimulus, a state of the world, a 
sensation of pain), produce an appropriate output (e.g. perform 
an action, draw a conclusion, utter a response).

Generally, cognitive tasks can be understood as functions from inputs 
to outputs, and (the psychological version of) the CTT states that the only 
realistic candidates for information processing tasks (performed by the 
human mind) can be expressed by computable functions. To be clear, a 
cognitive task can be described as the encoding of, for instance, a visual 
stimulus into input information, information processing (the respective 
function that is computed), and the decoding of output information, for 
instance, the performance of an action. Hereby, encoding and decoding 
are special forms of information processing (or symbol manipulation).

Not everyone accepts the psychological version of the CTT. In par-
ticular, some critics – including van Gelder – have argued that cognitive 
agents or systems can compute more than Turing machines (cf. claim (iii)). 
In the next section we consider one particular strand of argumentation for 
the claim that dynamical systems can have super-Turing capacities in con-
trast to symbolic systems. As it turns out, these super-Turing capacities 
seem to be only theoretical concepts.

III Arguments against the Psychological  
Church-Turing Thesis

There are a bunch of arguments for the claim that some systems have 
super-Turing capacities. According to van Gelder at least some dynamical 
systems have such capacities. One line of argumentation for this claim 
that we consider here is motivated by Kurt Gödel’s famous theorems. The 
foundation for the argumentation is that Gödel’s incompleteness results 
somehow demonstrate that the human mind cannot have an algorithmic 
nature. Lucas, for example, claimed in his “Minds, machines and Gödel”: 
“Gödel’s Theorem seems to me to prove Mechanism is false, that is, that 
minds cannot be explained [which implies here that they cannot be de
scribed] as machines.”8 Lucas’ claim obviously contradicts the PSSH and 
the psychological version of the CTT, according to which the processes in 
the human mind can be described as a symbolic system or Turing machine. 
Lucas provides the following argument for his claim: A digital computer 

8   Lucas (1961): 112.
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behaves according to a Turing table or programme; hence we can view 
such a digital computer as a formal system. Applying Gödel’s theorem to 
this system, however, we obtain a true sentence which is unprovable in the 
system. Thus, the machine does not ‘know’ that the sentence is true while 
we can see that it is true. Therefore, we cannot be a machine.9

If the arguments based on Gödel’s theorems are sound, then we 
must accept the theoretical possibility of ‘superTuring’ computation, i.e. 
theoretical devices which are strictly more powerful with respect to com-
putability than Turing machines. Examples of such powerful devices have 
been explored theoretically, for instance Zeno machines (accelerated Tu-
ring machines), which allow – in contrast to ordinary Turing machines – a 
countably infinite number of algorithmic steps to be performed in finite 
time, or analog neural networks, which allow computation over arbitrarily 
precise real values.10 So it seems van Gelder is right in claiming that some 
class of neural networks can have super-Turing capacities. However, no 
plausible account of how such devices could be physically realised has 
been offered so far. Both Penrose’s appeal to quantum properties of the 
brain and Siegelmann’s arbitrarily precise neural networks fail to take into 
account the noise inherent in any real world analog system. In general, 
any physical system, including the brain, is susceptible to thermal noise. 
This simple fact defeats the possibility of the arbitrarily precise informa-
tion transfer required for super-computation.11

Van Gelder follows H. T. Siegelmann, who repeatedly appeals to a 
result of Siegelmann and Sonntag, when they argue in later papers that 
analog neural networks do not require arbitrary precision, and thus are 
physically realisable.12 In particular, Siegelmann and Sonntag’s Lemma 
4.1 shows that for every neural network which computes over real num-
bers, there exists a neural network which computes over truncated reals, 
i. e. reals precise only to a finite number of digits. However, the length of 
truncation required is a function of the length of the computation – longer 
computations require longer truncated strings. Consequently, if length of 

9   Lucas’ argument was revived by Penrose, who supplemented it with the claim 
that quantum properties of the brain allow it to solve problems that are uncom-
putable by a Turing machine. See Penrose (1994). Lucas’ argument has been 
strongly criticised by logicians and philosophers (e.g. Benacerraf (1967), Pudlak 
(1999)), as has Penrose’s (e.g. Feferman (1995)).
10   Cf. Syropoulos (2008).
11   Cf. Arora/Barak (2009).
12   Cf. Siegelmann/Sonntag (1994).
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computation is allowed to grow arbitrarily, so must the length of the strings 
of digits over which the computation is performed in a truncated network. 
Therefore, one still must allow computation over arbitrarily precise reals if 
one is considering the computational properties of analog neural networks 
in general, i.e. over arbitrarily long computation times. Otherwise it is not 
clear whether such analog neural networks have super-Turing capacities.

In the current state of research it does not seem plausible that we can 
realise devices with super-Turing capacities, or that the brain is a realisa-
tion of a super-Turing device. In contrast, we already implement Turing 
machines in digital computers. This simple fact renders the CTT at least 
not physically implausible. In contrast, we have rendered physically im-
plausible the existence of dynamical neural networks as specified in van 
Gelder’s footnote 19. We slowly turn to the question whether his claim 
that the symbolic hypothesis is opposed to the dynamical hypothesis is 
substantive. But let us first introduce the ideas behind the connectionist 
perspective on cognition in order to be able to judge, whether there is a 
substantive difference between the two paradigms.

IV The Connectionist Perspective

Connectionists try to figure out how computations are implemented in 
the brain. The neuron hypothesis of Ramón y Cajal has dominated neuro-
science since the late 19th century. He was the first to observe and report 
the division of brain tissue into distinct cells: neurons. More importantly, 
he postulated a flow of information from axon to dendrite through the 
web of neural connections, which he denoted by drawing arrows on his 
illustrations of neural tissue. It suggests itself (also from a symbolicist per-
spective) to identify this flow of information from neuron to neuron as the 
locus of computation for solving cognitive tasks.

An alternative to the neuron hypothesis comes from the dynamical 
systems perspective, which asserts that the behaviour of a family of neu-
rons cannot be reduced to signals between them. Instead, the dynamical 
perspective asserts that computations should be modeled in terms of a 
dynamical system seeking basins of attraction.13 Neuroscientists such as 

13   An attractor is the point, or set of points, a trajectory in a dynamical system 
tends towards over time. A basin of attraction is defined by a collection of points 
in state space that a trajectory can start out to eventually arrive at the attractor.
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Freeman find support for the view in observed neural dynamics.14 That a 
family of neurons is irreducible to signals between them corroborates van 
Gelder’s view that the DH is a substantive alternative to the SH.

In the following section, we begin to argue that there is no logical 
incompatibility between neural networks and formal theories (logics) 
per se. Quite the contrary, neural networks were developed historically 
in very close relation to classical logic. It was even shown that the first 
artificial neural networks can be represented by classical logic. But first 
we want to clarify the role logic can play in the analysis of van Gelder’s 
opposition claim.

Logic provides an abstract symbolic perspective on neural computa-
tion given the neuron hypothesis is true. As such, logic can never be the 
whole story of the implementation level, which by definition involves 
the physical instantiation of an algorithm. Nevertheless, logic can help 
to bridge the gap between the implementation and algorithmic levels by 
analysing structural similarities across different proposed instantiations. 
For example, if we subscribe to the neuron hypothesis, it seems obvious 
to look for logic gates in the wiring between neurons; if we subscribe to 
the alternative dynamical systems hypothesis, it seems obvious to look 
for logic gates corresponding to family patterns of neurons, or equivalent 
structure in the relations between basins of attraction in a dynamical sys-
tem. Logical analysis can distinguish the commonalities across different 
implementation levels from their true disagreements as we will see in the 
next section. Representation theorems play a major role in such a logical 
search for similarities.

V Logical Neurons and Representation Theorems

Classical logic does not only provide the groundwork for the abstract theo-
ry of computation, it also motivated models of neural behaviour, i.e. neural 
networks, both historically and today.15 The classic work of McCulloch 
and Pitts proved the first representation theorem for a logic in an artifi-
cial neural network. In general, a representation theorem demonstrates 
that for every model of a theory, there exists an equivalent model within 
a distinguished subset. In McCulloch and Pitts’ case, the ‘theory’ is just a 

14   Freeman (1972); see also Freeman (2000).
15    Cf. the classic work of McCulloch/Pitts (1943), and a more recent work of 
Sandler/Tsitolovsky (2008).
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time-stamped set of propositional formulas representing a logical deriva-
tion, and the distinguished subset in question is the set of neural networks 
satisfying a particular set of assumptions, namely, neural firing is ‘all or 
none’, the only delay is synaptic delay, and the wiring of the network does 
not change over time. McCulloch and Pitts show the opposite direction as 
well: the behaviour of any network of the specified type can be represented 
by a sequence of time-stamped propositional formulas. The propositions 
need to be time-stamped to represent the evolution of the network through 
time: the activations of neurons at time t are interpreted as a logical con-
sequence of the activations of neurons at time t + 1.

McCulloch and Pitts had shown how neurons could be interpreted 
as performing logical calculations, and thus, how their behaviour could 
be described and analysed by logical tools. Furthermore, their approach 
was modular, as they demonstrated how different patterns of neural wi-
ring could be interpreted as logic gates: signal junctions which compute 
the truth value of the logical connectives (conjunction, disjunction, or ne-
gation) of incoming signals. The applications of this result are, however, 
limited by its idealising assumptions. As neurophysiology has enriched 
our understanding of neural behaviour, the hypothesis of synchronised 
computations cascading through a structurally unchanging network has 
become too distant from neural plausibility to resolve debates about im-
plementation in the brain.

Nevertheless, logical methods continue to provide insight into the 
structure of neural computation. In the face of an increasingly complex 
theory of neurophysiology, two research projects present themselves. 
The first focuses on realistic models of individual neurons. Sandler and 
Tsitolovsky for example, begin with a detailed examination of the biolo-
gical structure of the neuron, and then develop a model of its behaviour 
(using fuzzy logic).16 A second project focuses on artificial neural networks 
designed to mimic brain dynamics as closely as possible. For example, 
Vogels and Abbott ran a number of simulations on large networks of in-
tegrateandfire neurons.17 These artificial neurons include many realistic 
features such as a resting potential and a reset time after each action po-
tential is generated. After randomly generating such networks, Vogels and 
Abbott investigated their behaviour to see if patterns of neurons exhibited 
the characteristics of logic gates. They successfully identified patterns of 

16   Sandler/Tsitolovsky (2008).
17   Vogels/Abbott (2005).
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activation corresponding to NOT, XOR, and other types of logic gate with-
in their networks.

The idealising assumptions of these models continue to temper the 
conclusions which can be drawn from them. Nevertheless, there is a trend 
of increasing fit between mathematical models of neural behaviour and 
the richness of neurophysiology; and logic continues to guide our under-
standing of neurons as computational units. But from the standpoint of 
cognitive science, an describing and/or explanatory question remains: are 
these computational units the right primitives for analysing cognition? 
More generally, is there some in principle difference between an analysis 
offered in terms of neural networks and one offered in terms of logical 
rules as suggested by van Gelder? In order to make this question more 
precise we present in the following section a sketch of the debate between 
symbolicists and connectionists about mental representations.

VI The Controversy of Symbolicists and Connectionists 
about Representation

In an influential paper, Fodor and Pylyshyn argued that (i) mental represen-
tations exhibit systematicity; (ii) representations in neural networks do not 
exhibit systematicity (in contrast to symbolic representations); therefore, 
(iii) the appropriate formalism for modeling cognition is not connectionist 
(but symbolic). Systematicity here is just the claim that changes in the 
meaning of a representation correspond systematically to changes in its 
internal structure (e.g. from our ability to represent ‘Bonnie loves Clyde’, 
it follows that we are also able to represent ‘Clyde loves Bonnie’).18 Fodor 
and Pylyshyn claim that the only case in which representations in a neural 
network do exhibit systematicity is when the network is a ‘mere’ imple-
mentation of a symbolic system.19

It is important to notice what is at stake here: if cognitive tasks ma-
nipulate representations, then the appropriate analysis of a cognitive task 
must respect the properties of those representations. According to Fodor 
and Pylyshyn, the claim that descriptions and/or explanations in cognitive 
science must be in terms of symbolic systems does not, however, restrict 
attention to the symbolic level. Paradigmatic examples of the symbolic 

18   Fodor/Pylyshyn (1988).
19    They do, however, not indicate how such implementational networks avoid 
their general critique, cf. Chalmers (1990).
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approach in cognitive science such as Chomsky investigate the role  of 
particular algorithms for solving information processing tasks (such as 
extracting syntactic structure from a string of words).20 Nevertheless, the 
claim is that somewhere between abstract task specification and physical 
implementation, descriptive and explanatory power breaks down, and 
neural networks (except ‘mere’ implementations of symbolic systems) fall 
on the implementation side of this barrier.

The response from connectionist modelers was vehement and univocal: 
Fodor and Pylyshyn had simply misunderstood the representational pro-
perties of neural networks. Responses elucidated how representations in 
neural networks are ‘distributed’ or ‘subsymbolic’. Smolensky, van Gelder, 
Clark, and many others all emphasised the importance of acknowledging 
the distinctive properties of distributed representations in understanding 
the difference between neural networks and symbolic systems.21 Yet it is 
difficult to put one’s finger on just what the essential feature of a distribu-
ted representation is which makes it qualitatively different from a symbolic 
representation. Since the late 1990’s, the supposed distinction has largely 
been ignored as hybrid models have risen to prominence, such as the ACT-R 
architecture of Anderson and Lebiere.22 Such hybrid models combine neural 
networks (for learning) and symbolic manipulation (for high level problem 
solving). Although pragmatically satisfying, and strongly questioning van 
Gelder’s incompatibility claim, the hybrid approach avoids rather than 
resolves questions about the essential difference between symbolic and dis-
tributed representations.

However, we are now able to pose the above question more precise: 
Is there some in principle difference between subsymbolic computation 
by neural networks over distributed representations and symbolic com-
putation by Turing (or equivalent) machines? The representation theorem 
of McCulloch and Pitts discussed above suggests differently, namely that 
logical theories and neural networks are essentially the same, i.e. their 

20    Chomsky (1957).
21    Smolensky (1987): 13763; Smolensky (1988): 174; van Gelder (1990): 355-
364; van Gelder (1991): 355381; Clark (1993). In his paper “The dynamical hy-
pothesis in cognitive science” van Gelder even holds an antirepresentationalism, 
stating that “[u]nlike digital computers, dynamical systems are not inherently re-
presentational. A small but influential contingent of dynamicists have found the 
notion of representation to be dispensable or even a hindrance for their particular 
purposes.” van Gelder (1998): 626.
22   Anderson/Lebiere (1998).
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computational and representational properties respectively are logically 
equivalent. Can this result be extended to a larger class of neural networks 
including recurrent neural networks? The trick, as it turns out, is to treat 
neural computation as non-monotonic.

VII Representation Theorems for Non-Monotonic Logics 
in Neural Networks

We can easily see that some particular non-monotonic theories may be 
represented by neural networks.23 Consider, for instance, a system for 
reasoning about birds: two input nodes – one for Bird ( )x  and one for 
Penguin ( )x  – and an output node – for Fly ( )x  – are all we need to model 
this system with a simple neural network. As long as there is an excitato-
ry connection from Bird ( )x  to Fly ( )x  and at least as strong an inhibitory 
connection from Penguin ( )x  to Fly ( )x , this network will produce the same 
conclusions from the same premises as our non-monotonic example theo-
ry in the appendix. But this is just a simple specific case; a representation 
theorem for non-monotonic logics (NMLs) in neural networks would show 
us that for every non-monotonic theory, there is some neural network 
which computes the same conclusions. Such a theorem would demon-
strate that NMLs and neural networks can compute the same functions, 
have the same computational capacity, exhibit the same computational 
power, or – simply put – are computationally equivalent.  

Representation theorems for the computational equivalence of NMLs 
and neural networks have already been given. For instance, Balkenius and 
Gärdenfors consider the inferential relationship between a fixed input to a 
neural network and its so called ‘resonant state’, i.e. the stable activation 
state it reaches given the fixed input.24 By partitioning the state space of 
these networks into ‘schemata’, i.e. informational components closed un-
der conjunction, disjunction, and complementation, they demonstrate that 
the relation between input schemata and the corresponding resonant state 
or output schemata satisfies the axioms of a NML.

Balkenius and Gärdenfors’ result sheds some light on the formal rela-
tionship between neural networks and symbolic systems.25 However, their 

23   A short glimpse on non-monotonic logics is given in the appendix. For an in-
troduction to non-monotonic logics we recommend Makinson (2005).
24    Balkenius/Gärdenfors (1991): 34 f.
25   The result serves also a practical purpose. In practical applications, an algo-
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research attention in “Nonmonotonic Inferences in Neural Networks” was 
directed to very simple networks in which the atomic schemata, treated 
as propositions in a NM inference relation, correspond to single nodes.26 
If we want to resolve the connectionist (dynamicist) vs. symbolic systems 
debate, then the result of Balkenius and Gärdenfors needs to be supple-
mented in two ways: (i) by extension to more realistic neural networks; (ii) 
by extension to the case of actually distributed representations. We do not 
consider the required supplement (i) here.27 Instead, we directly jump to 
an examination of supplement (ii).

Leitgeb identifies himself with the tradition originating from Balkeni-
us and Gärdenfors, yet aims to establish a broader class of results. The 
theorems discussed so far address the relationship between a particular 
NML and a particular type of neural network. In contrast, Leitgeb proves 
a sequence of representation theorems for each non-monotonic system 
introduced by Kraus et al. in distinguished classes of neural networks.28 
Leitgeb’s results involve inhibition nets with different constraints on in-
ternal structure, where an inhibition net is a spreading activation neural 
network with binary (i.e. firing or nonfiring) nodes and both, excitatory 
and inhibitory connections. Leitgeb even extends his results by proving 
representation theorems for the same logics into interpreted dynamical 
systems.29

A dynamical system, at the most abstract level, is a set of states with 
a transition function defined over them. An interpretation function I of a 
dynamical system maps formulas from a propositional language to regions 
of its state space. Leitgeb obtains closure under logical connectives via 
the same strategy Balkenius and Gärdenfors employ, namely by assuming 
an ordering ≤ over informational states. If SI is an interpreted dynamical 

rithm for constructing a neural network from a set of non-monotonic inference 
rules has computational value, because it can efficiently find the fixed point which 
maximises satisfaction of the inference rules. Unfortunately, this computational 
efficiency can only be achieved on a case by case basis.
26    Cf. Balkenius/Gärdenfors (1991): 35-37.
27    Cf. for a treatment of supplement (i) Stenning/van Lambalgen (2008). They 
focus on neural networks which plausibly represent actual structure in the brain. 
There they consider networks made of nodes with sigmoid activation functions 
which model the behaviour of actual neurons more realistically.
28    Cf. Leitgeb (2001); cf. also Leitgeb (2003); cf. Kraus/Lehmann/Magidor 
(1990).
29   Cf. Leitgeb (2005).
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system, then SI   
  φ ψ⇒  iff s is the resonant state of SI on fixed input  

I ( )φ  and I  ( )ψ  ≤ s. We call the set of all such conditionals TSI. Then two of 
Leitgeb’s theorems follow:

Theorem 1. If SI is an interpreted dynamical system, then the 
theory TSI is closed under the rules of Kraus et al.’s non-mono-
tonic system C.

Theorem 2. If T⇒ is a consistent theory closed under the rules 
of the non-monotonic system C, then there exists an interpreted 
dynamical system SI such that TSI ≡ T⇒.

Unlike Balkenius and Gärdenfors, Leitgeb takes pains to ensure that 
his representation theorems subsume the case of distributed representa-
tion. In particular, the interpretation function I may map a propositional 
formula to a set of nodes, i.e. distributing its representation throughout 
the network. Hence, from a philosophical perspective, Leitgeb’s results 
are highly interesting for the debate between symbolic and dynamicist 
(including some connectionist) approaches. He has shown that any dy-
namical system performing calculations over distributed representations 
may be interpreted as a symbolic system performing non-monotonic infe-
rence. His result appears to show that there is no substantive difference in 
the computational and/or representational power of symbolic systems and 
that of dynamical neural networks. It seems that Smolensky’s subsymbo-
lic hypothesis, “The intuitive processor is a subconceptual connectionist 
dynamical system that does not admit a complete, formal, and precise 
conceptuallevel description”, is refuted, since Leitgeb has proven that 
every subsymbolic dynamical system admits a complete, formal, and pre-
cise symbolic description, namely a non-monotonic description.30

Leitgeb’s results allow us to switch back and forth from a symbolic de-
scription of cognition to a subsymbolic one and justify the use of a hybrid 
system combining symbolic and subsymbolic components (cf. ACT-R). That 
means we can use the virtues of both descriptions and avoid simultaneously 
their shortcomings. A symbolic system, for instance, has the advantage that 
we can read off the assumptions on which its inferences have been based, 
and how the conclusions have been derived. A dynamicist artificial neural 
network (ANN), in contrast, gives us only information about the trajectory of 
states which led to its stable or resonant state (i.e. the ‘conclusions’).

30    Smolensky (1988): 6-7.
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In case there is a principled difference between symbolic and sub-
symbolic systems, the key to articulating it may be embedded somewhere 
in Leitgeb’s assumptions. The step of interest seems to be the ordering 
over informational states of the respective network; it is an open question 
whether the states of actual neural networks – to which connectionists 
attribute representational properties – satisfy such an ordering. So there is 
work yet to be done in providing a full resolution to the symbolic systems 
vs. connectionism debate (recall also required supplement (i)).

Even if there is no substantive difference between the representational 
capacities of symbolic systems and those of neural networks, there may be 
other differences between their computational powers, in particular con-
cerning their computational efficiency. For instance, a NM system in the 
style of Kraus et al. (i.e. one with symbolic knowledge base) is able to in-
tegrate a new defeasible conditional to its knowledge base without further 
complications. In contrast, the whole topology of the corresponding ANN 
may, in this case, be required to readjust. On the other hand, if the ANN’s 
topology satisfies all inferences that can be drawn in the corresponding 
NM system, the network is perhaps significantly quicker. These potential 
differences seem to be worth to pursue in order to determine – if at all – in 
which respects symbolic and subsymbolic systems differ.

VIII Conclusion

Van Gelder’s claims (ii) and (iii), namely if there is a fundamental diffe-
rence between symbolic systems and dynamical systems, then there is a 
fundamental difference concerning their computational and representati-
onal powers and if symbolic and dynamical systems differ concerning the 
computational and representational powers, then dynamical systems have 
a greater computational power than symbolic systems, are refuted via 
Leitgeb’s sequence of representation theorems, since they show that the-
re is no substantive difference in the computational and representation al 
power of symbolic systems and that of dynamical systems. However, it 
remains unclear whether claim (i) holds, namely that there is a fundamen-
tal difference of symbolic systems and dynamical systems. Indeed, modus 
tollens speaks against claim (i), but it seems intuitively more plausible that 
the consequence of van Gelder’s claim (ii) is problematic. If there is any 
difference between the two kinds of systems, Leitgeb’s results and the  
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corresponding assumptions should help us articulating it. Our sugges–
tion is to take a closer look at Leitgeb’s ordering over informational states 
of the respective network. Moreover, even if there is no fundamental dif-
ference, there may be less principled differences in the computational 
efficiency of the corresponding systems. A future investigation of these 
potential differences in computational efficiency would clarify in which 
respects symbolic and dynamical-connectionist systems differ.

Since claims (ii) and (iii) are refuted and thereby claim (i) rendered 
questionable, van Gelder’s conclusion (vi) loses its force, namely that cog-
nition described by dynamical systems cannot be described by symbolic 
systems. Indeed, every subsymbolic dynamical system admits a symbolic, 
non-monotonic description. Moreover, since the two paradigms seem to 
be equivalent with respect to computational and representational powers, 
there is prima facie no need for cognitive scientists to prefer the dynami-
cist approach to cognition over the symbolicist, or vice versa. Quite the 
contrary, Leitgeb’s results suggest that they should – and, more import-
antly, can – be seen as fruitfully complementing each other. Hence we are 
not unjustified if we reject van Gelder’s corollary (vii) and treat both, the 
symbolic systems perspective and the dynamical systems perspective, as 
substantive hypotheses within the computational paradigm of cognitive 
science. And wouldn’t it be desirable for the future of cognitive science, if 
physical and biological analyses of real-life dynamical systems are transla-
ted into symbolic systems for implementation purposes, and the resulting 
constructions are analysed in terms of dynamical systems in order to com-
pare the constructions with data of reallife cognisers?

Appendix: Non-Monotonic Logics

Classical deductive reasoning does not exhaust logical inference. In a 
complex and changing world, cognitive agents must draw conclusions 
about their circumstances on the basis of incomplete evidence. Crucially, 
this evidence is defeasible, which means that conclusions drawn from it 
may be defeated by later evidence. Let us first see what monotonicity means 
for functions.

A funtion ( ) ( )  f  n f m≤is said to be monotonic if   n m≤ implies ( ) ( )  f  n f m≤ ; as 
the input grows, the output grows as well. Reasoning in classical logic is 
monotonic, because adding new premises always allows you to generate 
more conclusions. Let T and T  ' represent consistent sets of sentences 
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and let F   ( )T denote the deductive closure of T (i.e. the set of all sentences 
which follow from T by some specified (classical) inference rules). Then, 
for all classical logics, T ⊆  T ' implies F   ( )T ⊆ F   ( )'T .

Typically, a non-monotonic logic supplements an underlying classi-
cal logic with a new, non-monotonic connective and a set of inference 
rules which govern it. The rules describe a logic of defeasible inference, 
infer ences which may be defeated by additional information. For instance, 
from the fact that this is a bird, we can usually conclude this can fly. This 
inference, however, can be defeated, if we learn that this is a penguin. 
Symbolically, we want our system to ensure that Bird ( )x   φ ψ⇒ Fly ( )x , but 
Bird ( )x ^Penguin ( )x Fly ( )x . The example illustrates why such a 
system is non-monotonic, since {Bird ( )x }⊂{Bird ( )x , Penguin ( )x } yet  
F ( )x{Bird ( )x }( )x ⊄ ( )x{Bird ( )x , Penguin ( )x }( )x .

The basic idea is easy to see. If we allow ourselves default as-
sumptions (that is formally speaking a set of conditional assertions in a 
kn   owledge base) about the state of the world, we can easily reason about 
how it changes. Without the basic assumption that features of the world 
not  mentioned by the incoming evidence do not change, we would waste 
all our computational resources checking irrelevant facts about the world 
whenever we received new information. This consideration inspired John 
McCarthy’s assertion that, not only do “humans use [...] ‘nonmonotonic’ 
reasoning,” but also “it is required for intelligent behavior”.31

Kraus et al. provide a unified approach to a hierarchy of nonmonotonic 
logics of varying strengths.32 They use a preference (‘plausibility’) order
ing over worlds as a model for non-monotonic inference. They achieved 
that increasingly strict constraints on this semantic ordering correspond 
to increasingly powerful sets of syntactic rules, and used this insight to 
define the systems C⊆ CL⊆ P⊆ M, where C (‘cumulative reasoning’) is 
the weakest non-monotonic system they consider and M (‘monotonic’) is 
equivalent to standard propositional logic. Intermediary systems are cha-
racterised semantically by added constraints on the plausibility ordering 
over worlds and syntactically by the addition of stronger inference rules. 
For example, models for C are sets of worlds ordered by a relation
which is asymmetric and well-founded. C, for instance, is strengthened to 
the system CL by adding the inference rule Loop:

31   McCarthy (1980): 28.
32 Kraus et al. (1990).
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Semantically, models for CL add the constraint that  be transitive, 
i.e. form a strict partial order.
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